Lineare Gleichungssysteme: Unterschied zwischen den Versionen
Zeile 47: | Zeile 47: | ||
;Erste Gleichung nach <math>y</math> umstellen : <math>y=-5x+21</math> | ;Erste Gleichung nach <math>y</math> umstellen : <math>y=-5x+21</math> | ||
;Zweite Gleichung nach <math>y</math> umstellen : <math>y=-2x+9</math> | ;Zweite Gleichung nach <math>y</math> umstellen : <math>y=-2x+9</math> | ||
− | ;Schnittpunkt bei : <math>A(4/1)</math> | + | ;Den Schnittpunkt sehen wir bei : <math>A(4/1)</math> |
;Lösung des Gleichungssystems : <math>x=4</math> und <math>y=1</math> | ;Lösung des Gleichungssystems : <math>x=4</math> und <math>y=1</math> | ||
Version vom 5. Mai 2015, 07:45 Uhr
Inhaltsverzeichnis
Vorwissen
lineare Gleichungen, Äquivalenzumformungen
Grundproblem
Eine Gleichung mit nur einer Unbekannten können wir direkt lösen indem wir diese durch Äquivalenzumformungen umstellen. Sobald wir allerdings zwei oder mehr Unbekannte darin haben können wir diese nicht mehr direkt bestimmen.
Einstiegsproblem
von http://www.schule-studium.de/Mathe/Textaufgaben-Lineare-Gleichungssysteme.html
Herr Agricola hat einen kleinen landwirtschafltichen Betrieb mit Hühnern und Schweinen. Nach der Anzahl seiner Tiere gefragt, antwortet er: "Den Hund und die Katze mitgezählt, haben alle Tiere zusammen 89 Köpfe und 206 Beine."
Wie viele Hühner und Schweine hat Herr Agricola also?
Lineare Gleichungssysteme
Ein lineares Gleichungssystem ist eine Menge von linearen Gleichungen mit mehreren Unbekannten die alle gleichzeitig erfüllt sein sollen.
vlg. http://de.wikipedia.org/wiki/Lineares_Gleichungssystem
Beispiel
Wir haben die zwei Unbekannten und und die dazugehörigen Gleichungen
Wie müssen wir und wählen, so dass beide Gleichungen stimmen?
Lösungsverfahren
grafische Lösung
Jede Gleichung mit zwei Unbekannten lässt sich durch Umformung als lineare Funktion in einem Schaubild darstellen.
Zur grafischen Lösung des Linearen Gleichungssystems (LGS) müssen wir deshalb:
- zuerst die beiden Gleichungen nach auflösen/umformen
- die Schaubilder zeichnen
- grafisch den Schnittpunkt finden
- dessen Koordinaten ist die Lösung des LGS
- Erste Gleichung nach umstellen
- Zweite Gleichung nach umstellen
- Den Schnittpunkt sehen wir bei
- Lösung des Gleichungssystems
- und
Einsetzungsverfahren
Im Gegensatz zur grafischen Lösung versuchen wir hier rein mathematisch durch Berechnung auf das Ergebnis zu kommen.
Das Ziel dabei ist es, die beiden Gleichungen auf eine Gleichung zu reduzieren, in welche nur noch eine Unbekannte steht. Hierfür lösen wir eine Gleichung nach einer (geeigneten) Unbekannten um. Im Beispiel stellen wir die erste Gleichung nach um: